Natural Deduction for Monadic Predicate Logic Logic 2510, 12 November 2007

Quantifier Rules

 $\forall E$ (Universal Quantifier Elimination) For any variable v and constant c, if you have derived $\forall v \phi$, then you can write down $\phi v/c$, depending on everything $\forall v \phi$ depends on.

 $\exists I \ (\text{Existential Quantifier Introduction}) \\ \text{For any variable v and constant c,} \\ \text{if you have derived } \phi v/c, \ \text{then you can write down } \exists v \phi, \\ \text{depending on everything } \phi v/c \ \text{depends on.} \\ \end{cases}$

 \forall I (Universal Quantifier Introduction) For any variable v and constant c, if you have derived ϕ v/c, and c does not occur in ϕ , and c does not occur in anything ϕ depends on, then you can write down \forall v ϕ , depending on everything ϕ v/c depends on.

 \exists E (Existential Quantifier Elimination) For any variable v and constant c, if you have derived $\exists v \phi$, assumed $\phi v/c$, and derived ψ , and c does not occur in ψ , ϕ , or anything ψ depends on (except $\phi v/c$), then you can write down ψ a second time, depending on everything $\exists v \phi$ and the first ψ depend on, except the assumption $\phi v/c$.

(In the above rules, $\phi v/c$ is the result of replacing each free occurrence of v in ϕ by c. If $\forall v \phi$ or $\exists v \phi$ is a sentence, then any occurrence of v in ϕ is bound. If an occurrence of v in a sentence ϕ is bound, then that occurrence of v is bound in a sentence constructed from ϕ using the connectives and/or quantifiers. If an occurrence of v is not bound, then that occurrence of v is free.)

Connective Rules and Rule of Assumption

A (Rule of Assumption) You can write down any MPL sentence, depending on itself.

 $\begin{array}{l} \wedge \text{I} \mbox{ (Conjunction Introduction)} \\ \text{If you have derived } \phi \mbox{ and } \psi \mbox{, you can write down } (\phi \wedge \psi) \mbox{,} \\ \text{depending on everything } \phi \mbox{ and } \psi \mbox{ depend on.} \end{array}$

 $\begin{array}{l} \wedge \text{E (Conjunction Elimination)} \\ \text{If you have derived } (\phi \wedge \psi), \text{ you can write down } \phi \text{ or } \psi, \\ \text{depending on everything } (\phi \wedge \psi) \text{ depends on.} \end{array}$

 \rightarrow I (Conditional Introduction) If you have assumed ϕ , and you have derived ψ , you can write down $(\phi \rightarrow \psi)$, depending on everything ψ depends on except ϕ .

 \rightarrow E (Conditional Elimination or Modus Ponens) If you have derived ($\phi \rightarrow \psi$) and ϕ , you can write down ψ , depending on everything ($\phi \rightarrow \psi$) and ϕ depend on.

 \neg I (Negation Introduction) If you have assumed ψ , and you have derived $(\phi \land \neg \phi)$, then you can write down $\neg \psi$, depending on everything $(\phi \land \neg \phi)$ depends on except ψ . \neg E (Negation Elimination) If you have assumed $\neg \psi$, and you have derived ($\phi \land \neg \phi$), then you can write down ψ , depending on everything ($\phi \land \neg \phi$) depends on except $\neg \psi$.

 \forall I (Disjunction Introduction) If you have derived ϕ , you can write down ($\phi \lor \psi$) or ($\psi \lor \phi$), depending on everything ϕ depends on. (ψ is any MPL sentence.)

 $\lor E$ (Disjunction Elimination or Disjunctive Syllogism) If you have derived ($\phi \lor \psi$) and $\neg \psi$, you can write down ϕ , depending on everything ($\phi \lor \psi$) and $\neg \psi$ depend on.

If you have derived $(\phi \lor \psi)$ and $\neg \phi$, you can write down ψ , depending on everything $(\phi \lor \psi)$ and $\neg \phi$ depend on.

PC (Proof by Cases) If you have derived $(\phi \lor \psi)$ and $(\phi \rightarrow \alpha)$ and $(\psi \rightarrow \beta)$, then you can write down $(\alpha \lor \beta)$, depending on everything $(\phi \lor \psi)$ and $(\phi \rightarrow \alpha)$ and $(\psi \rightarrow \beta)$ depend on.

 $\label{eq:introduction} \begin{array}{l} \leftrightarrow \text{I} \mbox{ (Biconditional Introduction)} \\ \text{If you have derived } ((\phi {\rightarrow} \psi) \land (\psi {\rightarrow} \phi)), \mbox{ you can write down } (\phi {\leftrightarrow} \psi), \\ \mbox{ depending on everything } ((\phi {\rightarrow} \psi) \land (\psi {\rightarrow} \phi)) \mbox{ depends on.} \end{array}$

 $\begin{array}{l} \leftrightarrow \mathsf{E} \mbox{ (Biconditional Elimination)} \\ \mbox{If you have derived } (\Phi \leftrightarrow \Psi) \mbox{ then you can write down } ((\Phi \rightarrow \Psi) \wedge (\Psi \rightarrow \Phi)) \\ \mbox{depending on everything } (\Phi \leftrightarrow \Psi) \mbox{ depends on.} \end{array}$