Natural Deduction for the Sentential Calculus Logic 2510, 12 September 2007 (Revised) A (Rule of Assumption) You can write down any SC sentence, depending on itself. \wedge I (Conjunction Introduction) If you have derived ϕ and ψ , you can write down ($\phi \wedge \psi$), depending on everything ϕ and ψ depend on. $\wedge E$ (Conjunction Elimination) If you have derived $(\phi \land \psi)$, you can write down ϕ or ψ , depending on everything $(\phi \land \psi)$ depends on. \rightarrow I (Conditional Introduction) If you have assumed ϕ , and you have derived ψ , you can write down ($\phi
ightarrow \psi$), depending on everything ψ depends on except ϕ . \rightarrow E (Conditional Elimination or Modus Ponens) If you have derived ($\phi
ightarrow \psi$) and ϕ , you can write down ψ , depending on everything $(\phi \rightarrow \psi)$ and ϕ depend on. ¬I (Negation Introduction) If you have assumed ψ , and you have derived ($\phi \land \neg \phi$), then you can write down $\neg \psi$, depending on everything ($\phi \wedge \neg \phi$) depends on except ψ . ¬E (Negation Elimination) If you have assumed $\neg\psi$, and you have derived $(\phi\wedge\neg\phi)$, then you can write down ψ , depending on everything $(\phi \land \neg \phi)$ depends on except $\neg \psi$. VI (Disjunction Introduction) If you have derived ϕ , you can write down ($\phi \lor \psi$) or ($\psi \lor \phi$), depending on everything $\boldsymbol{\phi}$ depends on. (ψ is any SC sentence.) VE (Disjunction Elimination or Disjunctive Syllogism) If you have derived $(\phi \lor \psi)$ and $\neg \psi$, you can write down ϕ , depending on everything $(\phi \lor \psi)$ and $\neg \psi$ depend on. If you have derived ($\phi \lor \psi$) and $\neg \phi$, you can write down ψ , depending on everything $(\phi \lor \psi)$ and $\neg \phi$ depend on. PC (Proof by Cases) If you have derived $(\phi \lor \psi)$ and $(\phi \rightarrow \alpha)$ and $(\psi \rightarrow \beta)$, then you can write down $(\alpha \lor \beta)$, depending on everything $(\phi \lor \psi)$ and $(\phi \rightarrow \alpha)$ and $(\psi \rightarrow \beta)$ depend on. ↔I (Biconditional Introduction) If you have derived $((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$, you can write down $(\phi \leftrightarrow \psi)$, depending on everything (($\phi \! \rightarrow \! \psi$) \wedge ($\psi \! \rightarrow \! \phi$)) depends on. ↔E (Biconditional Elimination) If you have derived $(\phi \leftrightarrow \psi)$ then you can write down $((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$ depending on everything ($\phi \leftrightarrow \psi$) depends on.