Predicate Logic

Syntax of Predicate Logic (PL)

PL contains only the following symbols:

1. Predicate letters :

Zero-place predicate letters: A^0 , B^0 , C^0 , etc. One-place predicate letters: A^1 , B^1 , C^1 , etc. Two-place predicate letters: A^2 , B^2 , C^2 , etc. Three-place predicate letters: A^3 , B^3 , C^3 , etc.

•••

(That is, for any n, n-place predicate letters: A^n , B^n , C^n , etc.) If a numerical subscript is added to a predicate letter, the result is a predicate letter, for example, B_3^2 , C_{323}^0 , A_1^1 .

- Constants: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t If a numerical subscript is added to a constant, the result is a constant, for example, a₁, b₂₃, etc.
- Variables: u, v, w, x, y, z
 If a numerical subscript is added to a variable, the result is a variable, for example, u₁, x₂, etc.
- 4. Five sentential connectives : \neg , \land , \lor , \rightarrow , \leftrightarrow
- 5. Right and left parentheses : ()

The rules of formation of PL are as follows:

- 1. Any n-place predicate letter followed by a n constants is a sentence.
- 2. If φ is a sentence then $\neg \varphi$ is a sentence.
- 3. If φ and ψ are sentences, then $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$ are sentences.
- 4. If φ is a sentence that contains any constant ω , and does not contain variable β , then the expression that results by replacing one or more occurrences of ω with β and then attaching " $\exists \beta$ " or " $\forall \beta$ " to the front, is also a sentence.
- 5. Nothing else is a sentence.

Abbreviation

For convenience, the superscripts need not be written.

For example, we can write "Aa" to abbreviate " A^1a ", "Amn" for " A^2mn " and so on. Note that the "A" in "Aa" abbreviates a different predicate letter than the "A" in "Amn".

Examples

For example, the following are sentences of PL:

Ab Pmn $\forall x Axy$ $(\exists x Ex \land \exists x Rx)$ B $\forall x \forall y \exists z (Bxyz \lor \forall v Cvx)$ $\forall x \exists y (Sx \rightarrow Lxy)$ $\exists y \forall x (Sx \rightarrow Lxy)$

However, these are not sentences of PL:

 $\begin{array}{l} \forall xAb \\ \forall y \exists yAxy \\ \forall x (\exists yCy \rightarrow \exists xBxy) \end{array}$

Can you see why?