## Predicate Logic

## Syntax of Predicate Logic (PL)

## PL contains only the following symbols:

## 1. Predicate letters:

Zero-place predicate letters: $A^{0}, B^{0}, C^{0}$, etc.
One-place predicate letters: $A^{1}, B^{1}, C^{1}$, etc.
Two-place predicate letters: $A^{2}, B^{2}, C^{2}$, etc.
Three-place predicate letters: $A^{3}, B^{3}, C^{3}$, etc.
(That is, for any $n, n$-place predicate letters: $A^{n}, B^{n}, C^{n}$, etc.)
If a numerical subscript is added to a predicate letter, the result is a predicate letter, for example, $B_{3}^{2}, C_{323}^{0}, A_{1}^{1}$.
2. Constants : a, $b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t$

If a numerical subscript is added to a constant, the result is a constant, for example, $a_{1}, b_{23}$, etc.
3. Variables: $u, v, w, x, y, z$

If a numerical subscript is added to a variable, the result is a variable, for example, $u_{1}, x_{2}$, etc.
4. Five sentential connectives : $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
5. Right and left parentheses: ( )

## The rules of formation of PL are as follows:

1. Any $n$-place predicate letter followed by a $n$ constants is a sentence.
2. If $\varphi$ is a sentence then $\neg \varphi$ is a sentence.
3. If $\varphi$ and $\psi$ are sentences, then $(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \leftrightarrow \psi)$ are sentences.
4. If $\varphi$ is a sentence that contains any constant $\omega$, and does not contain variable $\beta$, then the expression that results by replacing one or more occurrences of $\omega$ with $\beta$ and then attaching " $\exists \beta$ " or " $\forall \beta$ " to the front, is also a sentence.
5. Nothing else is a sentence.

## Abbreviation

For convenience, the superscripts need not be written.
For example, we can write " $A a$ " to abbreviate " $A^{1} a$ ", " $A m n$ " for " $A^{2} m n$ " and so on. Note that the " $A$ " in " $A a$ " abbreviates a different predicate letter than the " $A$ " in " $A m n$ ".

## Examples

For example, the following are sentences of PL:

```
Ab
Pmn
\forallxAxy
(\existsxEx}\wedge\existsxRx
B
\forallx\forally\existsz(Bxyz\vee\forallvCvx)
\forallx\existsy(Sx->Lxy)
\existsy\forallx(Sx->Lxy)
```

However, these are not sentences of PL:

```
\forallAb
\forally\existsyAxy
\forallx(\existsyCy->\existsxBxy)
```

Can you see why?

