Exercise 3.1.1a Explain why the rule &E for MPL is a sound rule.

In MPL, if $(\phi \& \psi)$ is true under some interpretation then ϕ and ψ are true under that interpretation too. Thus, if $(\phi \& \psi)$ is entailed by some formula or formulas, then ϕ and ψ are both entailed by those formulas too. So if in a derivation $(\phi \& \psi)$ is entailed by its dependencies, and you write down ϕ or ψ with those dependencies, then the formula you write down will be entailed by its dependencies. Hence &E for MPL is a sound rule.

Exercise 3.1.2a Explain why for any interpretation under which "Sa" is true, "∃xSx" is true too.

Consider all interpretations under which "Sa" is true. For all such interpretations, the predicate S applies to the element a. That means for all such interpretations, there exists some element in the domain to which the predicate S applies. So for all interpretations under which "Sa" is true, "∃xSx" is true too.

se 3.1.2b	
(Fa & Ga) ⊢ (∃xFx &	Ga)
1. (Fa & Ga)	Α
2. Fa	1 &E
3.∃xFx	2 ∃I
4. Ga	1 &E
5. (∃xFx & Ga)	3, 4 &I
	1. (Fa & Ga) 2. Fa 3. ∃xFx 4. Ga

Exercise 3.1.2c Explain why " $\exists x(\exists xSx \& Rx)$ " is not a well-formed formula of MPL.

" $\exists x(\exists xSx \& Rx)$ " is not a WFF because it cannot be formed by applying the MPL formation rules as stated in [MPL03.1]. Rule 4 there stipulates that only a variable that has not occurred before can be used to generate a quantified WFF. Hence from the expression "($\exists xSx \& Ra$)", " $\exists y(\exists xSx \& Ry)$ " can be formed but not " $\exists x(\exists xSx \& Rx)$ " because "x" already occurs in "($\exists xSx \& Ra$)".

Exercise 3.1.2d State Rule \exists I without the shorthand symbolism.

If you have derived φ , and φ contains at least one occurrence of some constant c, then for any variable v which does not occur in φ , you can write down " \exists ", followed by v, followed by an expression formed by replacing one or more occurrences of c within φ by v, depending on everything φ depends on.

Exercise 3.1.3a Explain why Rule ∀E is a sound rule.

In MPL, if $\forall v \phi$ is true under some interpretation, then $\phi v/c$ is true under that interpretation too. Thus if $\forall v \phi$ is entailed by some formula or formulas, then $\phi v/c$ is entailed by those formulas too. So if, in a derivation, $\forall v \phi$ is entailed by its dependencies, and you write down $\phi v/c$ with those dependencies, then $\phi v/c$ will be entailed by its dependencies. Hence $\forall E$ is a sound rule.