Exercise 3.1.1a

Explain why the rule \&E for MPL is a sound rule.
In MPL, if $(\varphi \& \psi)$ is true under some interpretation then φ and ψ are true under that interpretation too. Thus, if $(\varphi \& \psi)$ is entailed by some formula or formulas, then φ and ψ are both entailed by those formulas too. So if in a derivation $(\varphi \& \psi)$ is entailed by its dependencies, and you write down φ or ψ with those dependencies, then the formula you write down will be entailed by its dependencies. Hence \&E for MPL is a sound rule.

Exercise 3.1.2a
Explain why for any interpretation under which "Sa" is true, " $\exists x S x$ " is true too.
Consider all interpretations under which "Sa" is true. For all such interpretations, the predicate S applies to the element a. That means for all such interpretations, there exists some element in the domain to which the predicate S applies. So for all interpretations under which "Sa" is true, " $\exists x S x$ " is true too.

Exercise 3.1.2b
Show (Fa \& Ga) $\vdash(\exists x F x$ \& Ga)
1 1. (Fa \& Ga) A
1 2. Fa $\quad 1 \& E$
1 3. $\exists x F x \quad 2 \exists I$
1 4. Ga $1 \& \mathrm{E}$
1 5. $(\exists x F x \& G a) \quad 3,4 \& I$

Exercise 3.1.2c

Explain why " $\exists x(\exists x S x \& R x)$ " is not a well-formed formula of MPL.
" $\exists x(\exists x S x \& R x)$ " is not a WFF because it cannot be formed by applying the MPL formation rules as stated in [MPL03.1]. Rule 4 there stipulates that only a variable that has not occurred before can be used to generate a quantified WFF. Hence from the expression "($\exists x S x \& R a) ", " \exists y(\exists x S x \& R y)$ " can be formed but not
" $\exists x(\exists x S x \& R x)$ " because "x" already occurs in "($\exists x S x \& R a)$ ".
Exercise 3.1.2d
State Rule \exists I without the shorthand symbolism.
If you have derived φ, and φ contains at least one occurrence of some constant c, then for any variable v which does not occur in φ, you can write down " \exists ", followed by v, followed by an expression formed by replacing one or more occurrences of c within φ by v , depending on everything φ depends on.

Exercise 3.1.3a
Explain why Rule $\forall E$ is a sound rule.
In MPL, if $\forall v \varphi$ is true under some interpretation, then $\varphi v / c$ is true under that interpretation too. Thus if $\forall v \varphi$ is entailed by some formula or formulas, then $\varphi v / c$ is entailed by those formulas too. So if, in a derivation, $\forall v \varphi$ is entailed by its dependencies, and you write down $\varphi v / \mathrm{c}$ with those dependencies, then $\varphi v / \mathrm{c}$ will be entailed by its dependencies. Hence $\forall E$ is a sound rule.

