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A distinctive feature of the Bayesian approach is its reliance on the math-
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%

Relevance Criterion  E confirms H if and only if P(H/E) > P(H); &
of Confirmation . E disconfirms H'if and only if P(H /E) < P(H), 1

For convenience, we shall often refer to P(H) as the prior. probability of
H, and P(H/E) as the posterior probability of H. P(H/E) is a conditional
probability and should be read as the probability of H given E.

Tt should be noted that, although it is defined in terms of quantitative
probabilities, the notion of confirmation (often called incremental confir-
mation) defined by the relevance. criterion is qualitative. The relevance

criterion. does ot specify how degrees of confirmation should be mea-
. sured; it merely gives a necessary and sufficient condition for that confir-
mation. Indeed, there is an ongoing dispute in the literature about whether
numerical degrees of confirmation should be_a function_of the ratio_of X
P(H/E) to P(H) or a function of the difference between them.’ Regardless
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of where they stand on this issue, all Bayesians agree that the more E
raises the probability of H, the more E confirms H.

The relevance criterion of confirmation differs significantly from the
absolute criterion of confirmation, according to which E confirms H if
and only if P(H/E) exceeds some suitably high threshold value, say, 0.9.
From the point of view of those who endorse the relevance criterion, the
absolute criterion confuses confirmation with acceptance. High probability
may be an appropriate condition for accepting a hypothesis, but it is not
necessary for confirmation. Thus, adherents to the relevance criterion
would consider H confirmed by E even though E raised the probability
of H only 2 little, from, say, 0.2 to 0.4, and the posterior probability of H,
P(H/E), remained less than 0.5.

BavEs’'s THEOREM AND THE AXIOMS
oF ProBABILITY THEORY

Bayes’s theorem (also called Bayes's rule, law, or equation) lies at the heart
of the Bayesian approach to confirmation and gives that approach its
name. In this section we shall be concerned solely with Bayes’s theorem
as a formal result in probability theory. As such, Bayes's theorem, like any
mathematical theorem, is entirely uncontroversial. What is distinctively
Bayesian about the Bayesian approach fo confirmation is not merely its
use of Bayes's theorem but its interpretation of the probabilities occurring
in the theorem. The Bayesian interpretation of probabilities as subjective
degrees of belief will be discussed later, in the section “Probabilities and
Degrees of Belief.”

Bayes’s theorem is a deductive consequence of the three basic axioms
of probability theory. Everything clse in probability theory can also be
deduced from these axioms, supplemented with definitions of notions such
as conditional probability. Here are the axioms in their unconditional
form.

Axiom 1  Every probability is a real number between 0 and 1:
0<PA) S L

Axiom 2 If A is a necessary truth, then P(A) = 1.

Axiom 3  IfA and B are mutually exclusive (that is, if it is impossible
for both A and B to be true), then P(A v B) = P(A) + P(B).
This theorem is often referred to as the special addition rule.

Strictly speaking, the A, B, C, and so on that probability ranges over are

propositions, but we shall, when convenient, talk about the probability of

events, theories, classes.of theories, and evidence.

Even though the set of axioms is small, several important rules that -

we shall use later on can be deduced from them.

Conditional P(A/B) =
Probability P(B)
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Negation P(~A) = 1-P(A).
Rule

{{n{)]ication If A logically entails B, then P{B) = P(A).
ule

Equivalence If A and B are logically equivalent, then P(A) = P(B)
Rule -

General P(AVB) = P(A)+P(B) — P(A&B
Addition Rule FB) = PASE)

The general addition rule is especially useful, since it applie

of whefther A and B are exclusive. Obv);ously, when A ang % a:errilglz;:gl?f;
exclusive, P(A&B) is 0 and the general addition rule reduces to the special
addition rule {axiom 3),

One way to make the general addition rule intuitively obvious is to
represent propositions by circles and to let the probability of each propo-
sition egual the area of its circle. When A and B are mutually exclusive
?he.A—cm:le and the B-circle do not overlap, and the probability of (AVB),
is simply the sum of P(A) —the area of the A<ircle —and P(B) —the area

of the B-circle (figure 1). When A and B are not exclusive, the circles
overlap (hgure 2.

(AvB)

AN
e ~

Figure 1

Thus, to calculate P(AVB) for figure 2 we add the areas of the two circles
as before, but then we have to subtract P{A&B), which is the area of the
overlap, to get the correct answer.?

To derive Bayes’s theorem from the probabili i

o probability axioms, we need a
definition of P(A/B), the conditional probability of A given B.* It is:

Definition of P(A&B

)’ where P(B) > 0.



630 | CH.5 CONFIRMATION AND RELEVANGE

(AvB)

(A& B) -~

Figure 2

The rationale for adopting this definition of conditional probability can
be appreciated by considering figure 2. Suppose that you are told that a
dart has been thrown, randomly, at the figure and has landed somewhere
inside the Bcircle. Given that the dart is inside the B-circle, what is
P(A/B), the probability that the dart is also inside the A-circle? The answer
is simple: it is the area common to both circles divided by the area of the
B-circle. In other words, given that probabilities are proportional to areas,
P(A/B) is equal to P{A&B) divided by P(B).

It is an immediate consequence of our definition of conditional prob-
ability that a general multiplication rule holds for the probability of any
conjunction (or for the probability of the joint occurrence of any two
evenfs).

General Multiplication Rule ~ P{A&B) = P(A/B) x P(B).
When P(A/B) = P(A), A and B are said to be statistically independent ‘of
one another and the general multiplication rule simplifies to the special

multiplication rule.

Special Multiplication Rule ~ When A and B are independent,
P{A&B) = P{A) % P(B).

It is only a short step from the general multiplication rule to Bayes’s the.-
orem. First, we note that, since (A&B) is logically equivalent to (B&A), it
follows from the equivalence rule that:

P(A&B) = P(B&A).

Substituting, using the general multiplication rule, gives:
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P(A/B) x P(B) = P(B/A) x P(A).
Rearranging the terms gives the simplest form of Bayes's theorem:

P(A/B) x P(B)
Bayes’s Theorem  P(B/A) = “—P(A)_ where P{A) > 0.

Before trying to apply Bayes's theorem to scientific reasoning and the

~confirmation of theories by evidence, let us consider a simple example

that illustrates its essential features. Imagine that a make of wheelchais,
the Samson, is manufactured in just two plants in the United States. One
factory is in Boston, the other in Chicago. The Boston plant makes four-
fifths of all Samsons; the Chicago plant makes the rest. Of the Samsons
manufactured in Boston, one-sixth have a special lightweight aluminum
frame, whereas, three-quarters of the Samsons made in Chicago are of this
type. You purchase a Samson wheelchair at an auction and discover that

it has 2 lightweight aluminum frame. What is the probability that it was
made in Boston?

Let A stand for having a lightweight aluminum frame, let B stand for
being made in Boston, and let C stand for being made in Chicago. We.
want to calculate P(B/A) using Bayes’s theorem. The information we are
given is that P(B) = 4/5, P(C) = 1/5, P(A/B) = 1/6, and P(A/C) = 3/4.
Bayes’s theorem tells us that

P(B/A) = P(A/B) x P(B).
PA)
Thus, the numerator equals 1/6 x 4/5 = 2/15. But what about the denom-
inator, P(A)? Samsons are made in only two places—Boston and Chi-

cago—so the alternatives are (A&B) and (A&C), which are mutually ex-
clusive and exhaustive. Thus, by axiom 3, :

P(A) = P[(A&B) v (A&C)] = P(A&B) + P(A&C),
and then, using the general multiplication rule, we get:

P(A} = P(A/B) x P(B) + P(A/C) x P(C)
= (1/6) x (4/5) + (3/4) x (1/5) = 17/60.

Thus:

P(B/A) = (2/15) x (60/17) = 8/17.
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When using Bayes’s theorem, we need not calculate the denominator,
P(A), from first principles every time. Instead, we can write down the
answer immediately using the total probability rule:

Total Probability Rule ~ P{A} = P(A/B) x P(B} + P(A/~B) x P(~B).

In the wheelchair example, there were just two exclusive alternatives:
either the chair came from Boston (B) or from Chicago (C). So, in this
example, we can calculate P(A) by substituting C for ~B in the total
probability rule:

P(A) = P(A/B) x P(B) + P(A/C) x P(C).

But it is easy to imagine a more complicated example in which aluminum
chairs were also made in Detroit (D) and Evanston {E). In this case, the
right-hand side of the equation for P(A) will include two extra factors:

P(A/B) x P(B) + P(A/C) x P(C) + P(A/D) x P(D) + P(A/E) x P(E).

More generally, when B,, B,, . . ., B, are n mutually exclusive and ex-
haustive hypotheses, we can express P(A) as the sum of products as follows.

P(A) = P(A/B,) x P(B,) + P(A/B,) x P(B,} + . . . + P(A/B,) X P(B,).

This can be written more succincily as:

P(A) = EP(A/B,-} x P(B,).

=1

Bayes’s THEQOREM AND SCIENTIFIC REASONING

The wheelchair example used above to illustrate Bayes's theorem can be
regarded as a simple analogue of scientific reasoning. Let the theory, T,
be that our Samson wheelchair was made in Boston. Initially, before we
discovered that the chair is made of aluminum, the probability that it came
from Boston was 4/5, since 80 percent of all Samson wheelchairs are made
there. In other words, in our example the prior probability of theory T,
P(T), is 4/5. Once we acquire evidence, E, that the chair is made of
aluminum, we calculate that the posterior probability of T given evidence
E, P(T/E), is 8/17. So the probability of T has dropped, and E disconfirms
T. {In fact, in this example, it is now slightly more probable than not that
the chair came from Chicago rather than Boston.) ,

In light of this example, we can summarize the application of Bayes's
theorem fo scientific theories as follows:
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Bayes_’s Equation P(T}E) - P(E/T) x P(T)'
(VCISIOD 1) P(E)

P(T} is the prior probability of T, P(E) is the probability of the evidence
E (what Salmon calls the expectedness of the evidence), and P(T/E), the
probability of T conditional on E, is the posterior probability of T. The
meaning of these terms is pretty straightforward and obvious, but the ter-
minology for P(E/T) can be misleading. P(E/T), the probability of E
conditional on T, is usually referred to as the likelihood of T (or, as some
authors prefer, the likelihood of T on E). To repeat, the likelihood of T
is P(E/T), not P(T), and similarly, the likelihood of T on E is PE/T),
not P(T/E). To avoid possible confusion, we will avoid using the
term likelihood as a synonym for probability and use it solely to refer to
P(E/T} and similar expressions.

When given some new evidence E for theory T, we revise our assess-
ment of the theory’s probability by using Bayes's equation to calculate
P(T/E) as a function of P(T), P(E/T), and P(E). We then discard our old
prior probability, P(T), and replace it with P(T/E). In this way, the pos-
terior probability of T becomes our new prior probability:

P,.(T) = P(T/E).

Some authors, such as Salmon, explicitly include background knowl-
edge, B, in Bayes’s equation, thus making all the probabilities involved
conditional. In the wheelchair example, B would include the information
that the chairs are made either in Boston or Chicago and nowhere else.
In reaHife scientific reasoning, B would include the information about
the world and other theories that scientists accept as true or highly prob-
able. Including background knowledge, the equation becomes:

Bayes’s Equation

P(E/T&B) x P(T/B)
{Version 2) '

P(E/B)

P(T/E&B) =

We can also use the total probability rule to expand the denominator as
follows.

P(E/T&B) x P(T/B)

P(T/E&B) = .
P(E/T&B) x P(T/B) + P(E/~T&B) x P(~T/B)

Since it is cumbersome to write out these equations when every probability
is explicitly conditionalized upon the background information, we shall
omit the reference to B whenever it is convenient. Thus, Bayes's equation
can be expressed more simply as:



e
4o
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s Equation | T) x P(T
Bayes's Equation  porpy P(E/T) x P(T) —
{Version 3) P(E/T) x P(T) + P(E/~T) x P(~T)

And in its most general form, when T, T, . .., T, are mutually exclusive
and exhaustive, we have:

. PETY xP(T
Bayes’s Equation P(T,/E) = ,-=,,( W X P(TY)

(Version 4) | P(E/T) x P(T})

i=]

PROBABILITIES AND DEGREES OF BELIEF

In order to apply Bayes’s equation (in any of its four \‘r_ggipgs,)ﬁt,q,_s_cientlﬁc ‘
reasoning, we ha?&yéﬁééhﬁa—fc"_ﬁthré}robabﬂ'ifiéé' that appear in it mean
and hiow they should be measured. The pure Bayesian line is that, subject
to some important conditions, all probabilities are sub|'echve.degrees c:f
belief and that rationality requires us to revise our beliefs using Bayes’s
equation. The subjective {or so-called personalist} i:?_terpretahon ?f prob-
ability and the alleged connection between rationality andl Baxes s equa-
fion are controversial issues that are debated in the readings in this chapter.
The purpose of this section is to explain and clarify the main issues in-
volved in that debate. _

The right-hand side of Bayes’s equation {version 1} contains three sorts

. of probabilities: P(T), P(E), and P(E/T)}—the prior probability of theoty

T, the expectedness of evidence E, and the likelhood of T. In many

respects, likelihoods are the least problematic, since, even if P(E{T) isa
 subjective degree of belief, it seems rational to base that probability on

2. the obijective relation between T and E. For example, if T is a deterministic

- theory that deductively entails E, then everyone agrees that the correct

* value to be assigned to P(E/T) is one. Similarly, if T is a statistical theory, -

" as in our wheelchair example, then T (together with background infor-

" 'mation B) will specify the probability that E is true on the condition that
T is true. : .
Assigning values to P(E) and P(T) is more difficult. Later,‘m the
section on Glymour, we discuss the so-called problem of old evidence,
that is, the problem of assigning to P(E} some value other than 1 when

- E is already known to be true. Of course, one might try to use the second

or third versions of Bayes's equation to calculate P(E), but as Salmon
. points out in his article, to do so we would need to calculate P(E/~T),
and since ~T is simply the negation of T, not a specific theory, we cannot
" infer from ~T the value of P(E/~T). The fourth version of Bayes's equa-
tion avoids the indeterminate character of ~T but only at the price of

" requifing a complete list of all the possible theories that predict E {or that
* assign to E some definite probability). In practice, only a small handful

X X
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of rivals to T (possibly none) will be candidates for serious consideration.
Scientists simply do not know what all the logically possible rival theories
are. For further discussion of this problem, see the articles by Salmon and

- Glymour and the sections on their articles later in this commentary.

Even if values for P(E/T,) were available for every single theory T;
that predicts E (either with certainty or some definite probability), the
problem of determining the prior probabilities, P(T}), of each of these
theories would remain. At this point subjectivist Bayesians say that the
prior probability of a theory, T, is simply the actual degree of belief that
a person has in T. Strictly speaking, on the subjectivist interpretation of
probability, Tthere is no such thing as the prior probability of T, since
degrees of belief are relative to persons and it is perfectly possible that
different people believe the same theory to different degrees, even given
the same background .information. According to subjectivist Bayesians, it
is an fllusion to think that there is one objectively correct answer to the
question, “What is the prior probability of T?”

It seems incredible, on the face of it, that anything useful could be
said about scientific_inference and confirmation, starting from a basis as
subjective as each person’s degree of belick. In the remainder of this sec-
tion, we take a brief look at some of the Tost important objections to the
subjective interpretation of probability and the Bayesian replies to these

- objections. Many of these issues are explored more fully in Glymour's

article and discussed later in this commentary. .

Bayesians begin with degrees of belief. What are they, and how can
they be measured 50 as to yield numerical probability values? The pioneers
of Bayesian theory (Frank P. Ramsey, Bruno De Finetti, Leonard J. Sav-
age) interpreted degrees of belief in terms of people’s behavior. Ramsey
proposed, for example, that a person’s degree of belief in any proposition
be measured by the least odds at which he would be willing to gamble
on the proposition being true. In this way, we connect degrees of belief
with something we can observe and measure, namely, betting behavior.
But even when they are measured in this way, why should we think that
the degrees of conviction that a person happens to have in various prop-
ositions qualify as probabilities by satisfying the probability axioms? Surely,
people violate the axioms in many cases. For example, there might be a
proposition Q, such that a person’s degree of conviction in Q and his
degree of conviction in ~Q do not add up exactly to 1.

The Bayesian response to this objection is the Dutch book argument.
Professional gamblers say that a Dutch book has been made against some-
one if that person accepts a series of bets such that, no matter what the
outcome, the person is guaranteed to lose money. No rational person
would knowingly gamble in this way. The Dutch book theorem proves

' that a necessary and sufficient condition for 3"‘3@“‘“"83755&_5_51?'_%-‘;’:?(16

agaiis you is U your degrees of belief satsy the axioms of probability
theory. When this condition is satisfied, your degrees of belief are said to

—
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.be coherent. Thus, when subjective Bayesians interpret probabilities as

degrees of belief, a certain amount of idealization is involved. The degrees

- of belief in question are not necessarily the actual degrees of conviction

that a particular person has, but rather the degrees of belief that she would

have if she were ideally rational and her degrees of belief were coherent. .

Bayesians view the coherence requirement as having the same status
and itionale as the requirement of logical consistency. Rationality re-

‘quires not only consistency with the laws of logic, but also consistency

with the probability axioms. Both are necessary conditions for ra_tior'aal
belief. What makes the Bayesian position thoroughly subjective is its in-
sistence that coherence (which entails logical consistency) is not only nec-
essary but also sufficient for rationality: no matter how crazy OP?’S, de.grees
of belief may seem to someone else, if they satisfy the probablllt.y axioms,
then, according to the Bayesians, they cannot be condemned as lrrahongl.

Suppose that Adam and Eve each have a different degree of convic-
tion in the proposition, O, that it will snow in Phoenix next July. Ad?m
gives it a probability of 0.9, while Eve gives it only a 0.05 chance of b.e!ng
true. As long as Adam also assigns a probability of 0.1 to the proposition
that it will 7ot snow in Phoenix next July his degrees of belief conform to
the probability axioms. Similarly, if Eve’s degrees of belief are coheren.t,
then she thinks it 0.95 likely that there will be no July snowfall in Phoenix
next year.

As far as subjective Bayesians are concerned, both Adam and Ev.e are
rational with respect to the extremely limited set of propositions consisting
of Q and ~Q. But there is more to coherence than merely sah%ymg the
negation rule. One also has to satisfy the special and general at.idltlon rules
for disjunctions (p. 629), the special and general multiplication rules for

conjunctions (p. 630), the implication and equivalence rules (p. 629), and -

axiom 2 concerning necessary truths (p. 628). Axiom 2 is especially prob-
lematic, since it requires that every necessary truth, no matter how com-

plex, be assigned a probability of 1. Thus, while it might seem as .though
coherence 1s a very weak condition (because it places no restrictions on
the degree of belief that a rational person can assign to any particular
contingent proposition), in fact coherence makes very strong demands on
the degrees of conviction that can be assigned to the members of any
reasonably sized set of propositions (where that set includes many contin-
gent statements, many necessary statements, and all their truth-ﬁjr.actlonal
compounds). Moreover, every proposition in the set must be assigned a
precise number in the interval from 0 to 1. _ ,
Even when we have a coherent set of degrees of belief, there are
several tricky issues connected with P,.(T) = P(T/E), the Bayesian con-
ditionalization rule that we are supposed to use in order to Iearr! _from
experience. The first of these problems concerns the prior probability of
T, P(T), that appears on the righthand side of the Bayesian expression for
P(T/E). Suppose one were to assign a prior probability of 0 to the theory,

A 3 =
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T. In that case, no amount of evidence could ever confirm it, since its
posterior_probability, P(T/E), would always remain 0, It is important o
realize that the coherence requirement does not solve this problem. Co-
herence requires that we conform to the probability axioms. The relevant
axiom (axiom 2) dictates that all necessary truths have a probability of 1.
In conjunction with the other axioms, this entails that ali necessary false-
hoods must have a probability of 0. But the axioms do not forbid us from
also assigning a probability of 0 to any contingent proposition that we
might judge to be impossible. The usual Bayesian response is to impose
the further demand of strict coherence: a set of beliefs is strictly coherent
if and only if it is coherent and no contingent proposifion is assigned a

probability (degree of conviction) of 0 or 1. (This is one response to the
Poppenian argument discussed in the section “Why All Theories Are Im-
probable,” in the commentary on chapter 1.)

Another problem with the dependence of P(T/E) on P(T) is that the
amount by which evidence E confirms (or disconfirms) theory T will de-
pend on the prior probabilities assigned to T by different scientists. How
can this subjective influence on the degree of confirmation be reconciled
with scientific objectivity? Bayesians reply by appealing to a theorem about
the washing out (or swamping) of priors. The theorem shows that as evi-
dence accumnulates, the values of P(T/E) calculated by individual scientists
with different prior probabilities will tend to converge. In the long run,
the initial divergence in the (subjective) prior probabilities becomes irrel-
-evant and {objective) evidence dominates the calculation of confirmation.

Finally (for now), there is the issue of motivating the Bayesian con-
ditionalization rule.* Why should we revise our degrees of belief in ac-
cordance with Bayes’s formula for P(T/E)? Remember that rationality, for
-Bayesians, is supposed to begin and end with the requirement of coher-
ence {or strict coherence) for one’s beliefs at any given time. Why, then,
is it irrational for someone to violate the Bavesian rule when revising hey
i degrees of belief, so long as her entire set of beliefs remains coherent? If
a Bayesian were later to look at that coherent belief set, in ignorance of
how the person’s degrees of belief had been arrived at, the Bayesian would
 judge the set rational. The synchronic Dutch book argument (for the
coherence of beliefs at a given time) seems to have no relevance to the
diachronic conditionalization rule (for how probabilities should change
over time). One popular Bayesian response to this challenge is to construct
a further Dutch book argiiment that is expliciily diachronic. The gist of
the argument runs as follows. If one makes a series of bets, some of which
depend on what one’s degrees of belief will be in the future, and if one
follows a rule other than the Bayesian conditionalization rule and this
alternative rule is known to the person with whom one is betting, then

the person with whom one is betting can always construct a Dutch book
- against one. A necessary and sufficient condition for avoiding a Dutch
book under the conditions stated is that one uses nothing but the Bayesian

X
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conditionialization rule for changing one’s degrees of belief. Just as the
synchronic Dutch book argument is used to derive the coherence condi-
tion from the presumption of rationality, so, too, the diachronic Dutich
book argument is supposed to show how rationality mandates the Bayesian
tule for revising one’s degrees of belief over time.

52 | Salmon on Kuhn and Bayes

In a companion article, written at the same time as the piece in our book,
Salmon relates that, when he first began reading Kuhn's The Structure of
Scientific Revolutions (1962), he was so shocked by Kuhn's repudiation of
the distinction between the context of discovery and the context of justi-
fication that he set the book aside without finishing it.® Later, in 1969,
while preparing for a conference on the relation between the history of
science and the philosophy of science, Salmoen returned to Kuhn's book
with renewed interest. Salmon conjectured that the reason for Kuhn's
rejection of the traditional discovery-justification distinction lay in Kuhn's
commitment to an inadequate conception of scientific justification,
namely the H-D account. According to the H-D account, everything con-
nected with the genesis of 3 scientific theoty and its evaluation prior to

Being tested belongs to the context of discovery and, as such, is irrelevant
the theory's epistemic justification; a theory is justihed and its acceptance
rationally warranted only when the theory has been confirmed, and a
theory is confrrmed if and only if the predictions deduced from it are
observed to be true.

THE INaADEQUACIES OF HYPOTHETICO-DEDUCTIVISM

As Salmon notes, a significant limitation of the H-D account of confir-
mation is that it ignores statistical theories. Statistical theories confine their
predictions to assignments of probability to classes of events but do not
logically imply that any particular event will occur. By regarding inductive
confirmation, in effect, as the inverse of logical deduction, the H-D ac-
count excludes from its scope all those theories in which the relation
between theory and evidence is not deductive but probabilistic. The Bay-
esian_approach has no such limitation, since it permits the likelihood
P(E/T) to assume values less than 1.

In its simplest form, the B-IJ account seems committed to the view
that any theory that logically implies an observational prediction, O, is as
well confirmed by that prediction as any other theory that implies O. This
flies in the face of common sense and scientific practice. Bayes's equation
is attractive because it can do justice to the differential confirmation o
rival theories by the same evidence, by appealing to differences in the
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initial plausibility of those theories (and hence differences in their prior
probabilities).”A nice lustration of this 1s the Bayesian solution to the so-
called tacking paradox or the prablem of irrelevant conjunction. Suppose
that theory T, in conjunction with background information B, entails the
true observational prediction E: (T&B)—E. Now let I stand for some con-
lingent statement that is logically independent of T and irrelevant to E. It
follows trivially that if (T&B)—E, then it must also be the case that
(T&I&B)—E. Thus, according to the H-D account, & confirms both the
original theory T and the augmented theory y (T&I) and, moreover, con-

firms them by the same amount. The Bayesian analysis agrees with the
H-D account that E confirms both theories but disagrees about the degree
of confirmation. On the most popular version of the Bayesian analysis, the
degree of confirmation of a theory by evidence is a function of the differ-
ence between the posterior probability of the theory given that evidence
and the prior probability of the theory.” On this version, the Bayesian
analysis entails that the degree of confirmation conferred by E on (T&I)
must be less than the degree of confirmation that E confers on T alone.

Here are the two expressions for the degrees of confirmation of T and
(T&I) on the difference analysis.

- P(E/B)}

P(T/E&B) - P(T/B) = P(T/B) x [ FEB)
P(T&I/E&B) — P(T&I/B) = P(T&I/B) x [1 - P(E/B)}‘
P(E/B)

These expressions are derived from the second version of Bayes's equa-
tion, setting P(E/T&B) and P(E/T&I&B) both equal to 1. The factor in
the square brackets is the same for both theories, and their respective
degrees of confirmation are proportional to their prior probabilities.
Since (T&I)—T, and I is a contingent statement that is independent of

7, it follows from the implication rule that P(T&I/B) must be less than (¢ a

P(T/B). Thus, E confirms (T&I) by a smaller amount than it confirms T-
adding the irrelevant conjunct I to T lowers the confirmation provided by
E. In this respect, then, the Bayesian approach to confirmation is a
decided improvement over the H-D account.

Although Salmon does not discuss it in his article, the Bayesian ap-

proach also promises a resolution of the Duhem problem (that is, the
probiem of assigning the blame for a failed prediction to a particular mem-

ber of a group of hypotheses), for not only are some theories confirmed
better by the same evidence, but Bayes's equation capn also be used to

Po

explgin how some components of a group of hypotheses and assumptions
receive a much larger disconfirmation than other components when ob-

servations disagree with theoretical predictions.® Thus, the Bayesian ap-

‘-
-
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proach can show us where the blame should be placed when a group of
hypotheses and assumptions lead to a false prediction. o

Salmon is not alone in thinking that the H-D account is inadequate.
An eary critic of hypothetico-deductivism, Popper rejected it because he
denied the whole notion of inductive confirmation. (See Popper, “The
Problem of Induction,” in chapter 4 for details.) Other critics, such as
Carnap and Reichenbach, accepted that confirmation is an esseqtial part
of scientific rationality but insisted that it should be understood in terms
of Bayes’s theoremn. Carnap interpreted the probabilities in Bayes’s theo-
rem as a priori logical probabilities; Reichenbach consh_lfed them as
empirical frequencies. Both were objectivists about-probablllty.'More re-
cently, an ‘entire school of statisticians and philosophers of science h:as
arisen—the personalists or Bayesians—that interprets the probabilities in
Bayess theorem subjectively, as degrees of belief. - ,

Salmon thinks that we can use Bayes’s theorem to reconcile Kuhn's
historical approach to understanding science with the logical empiricisr‘n
of philosophers such as Camap, Reichenbach, and Hempel. The key is_
to_incorporate Kuhn's values—criteria for theory assessment spch as con-
sistency, simplicity, and fruithulness—info the Bayesian equation that de-
fines confirmation. Variation in the interpretation of these values and the
emphasis placed on them can give rise to differing judgments about the
prior probability of a theory. Thus, scientists can reach different but
equally rational judgments about how well a theory is coni:'lrmed l?y a
particular piece of evidence using the same algorithm (Ba'yes s equation)
because they insert different inputs into that algorithm in the f?rm'of
different judgrments about prior probability. Salmon contrasts this with
Kuhn’s own suggestion in “Objectivity, Value Judgment, z_md Theory
Choice” (reprinted in chapter 2, above) that scientists reach different con-
clusions because they use different algorithms. However, careful study of
Kuhn's article reveals that when Kuhn talks about using different algo-
rithms he really means inserting different subjective inputs into a Bayesian
algorithm, so Kuhn is much closer to Salmon’s position than his language
might suggest.

Prior PROBABILITIES

As Salmon emphasizes in his article, most of what is philosophically con-
troversial about the Bayesian approach to confirmation depends on t_he
interpretation of prior probabilities in Bayes’s equation. Salmon distin-

guishes three such interpretations: the objective-logical, the objective-

empirical, and the subjective. Salmon agrees that the obiecti‘fg-!ogical
interpretation of Carnap and others, according to which probabilities are
assigned a priori to all statements on the basis of 2 formal language apd
assumptions about the equiprobability of states of affairs, is hc!pelc.:ssly in
adequate to the task of analyzing the probability of reallife scientific the-
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ories. That leaves the objective-empirical and the subjective interpretation.

In an earlier book, The Foundations of Scientific Inference, Salmon
adopted Reichenbach’s objective-empirical interpretation according to
which probabilities are relative frequemie&i ! The basic idea is this: Every
hypothesis is either true or false, but when a new hypothesis, H, is first
proposed, we do not know which attribute (truth or falsity) it has. In order
to make sense of the prior probability (or plausibility) of the single hy-
pothesis, H, we have to place it in a reference class of similar hypotheses.
Then, on the basis of past experience, we can see how often hypotheses
in this class have turned out to be true. The ratio of the number of true
hypotheses to the total number of hypotheses in the reference class is then
taken to be the prior probability of H.

In rough outline, this procedure is supposed to be similar to the way
frequency theorists handle the problem of the single case. A typical ex-
ample is the problem of assigning a probability to whether a particular
(asymmetrical) coin will show a head on its next toss. In the case of the
coin, we estimate this probability by dividing the number of times the
coin has come up heads by the number of times the coin has been tossed.
Thus, very roughly, the frequency theorist would say that the probability
of getting a head on the next toss of the coin is 0.55 if the frequency of
heads converges to 0.55 as the number of tosses becomes ever larger.
Applying this same approach to the prior probability of hypotheses is ex-
tremely difficult. Not least among these difficulties is the problem of spec-

_ying the appropriate reference class. What exactly does it mean to talk
about hypotheses that are similar to H? Is it a matter of mathematical
form, such as the use of inverse-square laws? And if so, why should the
success of such laws in one domain of science (such as the study of gravity)
make it more likely that they will succeed in another domain (such as the
investigation of the strong force binding together particles in the atomic
nucleus). 12

Throughout his career, Salmon has been highly critical of the unfet-
tered subjectivism of the pure Bayesian or personalist interpretation of
probabilities as degrees of belief. To Salmon, scientific judgments about
confirmation should not depend in any way on the prejudices, emotions,
or mood swings of individual researchers. The answer, he thinks, lies in
what he (following Abner Shimony) calls tempered personalism. Tempered
personalism places constraints on prior probabilities that go beyond mere
coherence. Since experience has taught us that scientists have been mod-
erately successful in the past, no hypothesis advanced by a serious scientist
should be given a prior probability that is either 0 or vanishingly small.
But, again, since experience tells us even the most promising hypotheses
in the past have sometimes turned out to be false, the prior probability of
any new hypothesis should be fairly low. The notion of success invoked in
this discussion is crucial for understanding Salmon’s proposal. For Salmon
believes that when we assign a prior probability to a new hypothesis, we
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are trying to estimate the correct, objective probability that the hypothesis
will turn out to be successful, and by successful, Salmon means true. Thus,
while it may seem as if Salmon is making significant concessions to Kuhn
when he admits consistency, analogy, and professional scientific standing
as factors that play a legitimate role in determining the plausibility of new
hypotheses, in fact his conception of probability is still, at bottom, objec-
tive and frequentist. It is, for example, only because past experience has
taught us that hypotheses advanced by cranks very seldom tum out to be
true that we should assign them a negligibly small prior probability. As
Salmon himself puts it, “prior probabilities . . . can be understood as our
best estimates of the frequencies with which certain kinds of hypotheses
succeed. . . . The personalist and the frequentist need not be in any seriots
disagreement over the construal of prior probabilities” (564).

One final but important point: Salmon readily admits that it “seems
preposterous” (564) that plausibility judgments based on values such as
simplicity and symmetry could result in exact numbers for prior probabil-
ities. Like many advocates of Bayes's equation, Salmon appeals to the
washing out or swamping of priors to argue that their exact value really
does not matter. For as soon as evidence begins to accumulate, the values
for the posterior probability of a hypothesis converge. In the long run, the
particular values adopted for the prior probability become irrelevant (so
long as we avoid the extreme values of 0 and I). But this convergence
argument assumes that different scientists agree on the likelihoods, an
assumption that Salmon defends later in his article.

TrE EXPECTEDNESS OF EVIDENCE

Methodologists of science commonly hold that a theory receives greater
confirmation from the successful prediction of something surprising than
from the prediction of something expected. This issue is addressed, in part,
in chapter 4 under the guise of the debate over novel predictions. Because
the righthand side of Bayes's equation has P(E), the probability of the
evidence E, as its denominator, it follows that, other things being equal,
the lower the value of P(E), the greater the value of P{H/E). Thus, the
more unexpected the prediction, the greater its confirming power if it
should turn out to be true. But what is P(E), the expectedness of the
evidence, and how can it be measured?

Salmon uses the total probability rule to express P(E) in terms of prior
probabilities and likelihoods, writing all the probabilities involved as con-
ditional on background knowledge B, where B includes initial conditions,
boundary conditions, auxiliary hypotheses, and other relevant information.

P(E/B) = P(E/T&B) x P(T/B) + P(E/~T&B) x P(~T/B).

CommENTARY | 643

If.T is a deterministic theory, then T (in conjunction with auxiliary
hypotheses and assumptions) entails E. In such a case, the likelihood
P(E/T&B) equals | and P(E/B), the expectedness of the evidence, must
be at least as great as P(T/B}, the prior probability of T. But assigning an
exact number to P(E) is not easy, since it involves knowing the value of
the likelihood P(E/~T&B), a problem that Salmon addresses in his sec-
tion on likelihoods.

A second difficulty with P(E/B) that Salmon acknowledges is a version
of the problem of old evidence. This is discussed at some length later in
this commentary in the section “The Problem of Old Evidence.” For the
moment we merely note that Salmon thinks that, given his characteriza-
tion of background information B, the objective value of P(E/B) must
always be 1. Since B includes al the details about the experimental setug
and the instruments used to observe E, the objective probability tha
will occur under those conditions (assuming that the system in queshdw
is deterministic) is 1. Thus, Salmon concludes that the expectedness P(E)
can only be a subjective probability, reflecting the degree to which a par-
ticular scientist finds E psychologically surprising. Given Salmon’s hostility
towards subjectivism, the conclusion that “expectedness defies interpreta-
tion as an objective probability” (566} is highly unwelcome. At the end
of his article, Salmon suggests a way to avoid this and a similar problem
with the likelihood P(E/B&~T), while still permitting objective compar-
isons among rival theories.

LIXELIHOODS AND THE CATCH-ALL HYPOTHESIS

The main problem with likelihoods concerns the value of P(E/~T&B),
which appears in the expression for P(E). P(E/~T&B) is the probability
that E is true given that theory T is false, but since ~T is not a specific
theory, the corresponding likelihood is not well defined. Even when we
have two competing theories, T) and T, (such as specific versions of the
wave and particle theories of light), P(E/~T,) is not equal to P(E/T,)

* Although theories T, and T, are contraries, and thus T, entails ~T, and

T, entails ~T), they are not contradictories; thus, ~T, does not entail T,
nor is T, logically equivalent to ~T;. It is possible that both T, and T, are
false. Thus, if we write out the set of logically exclusive and exhaustive
hypotheses, it will include not only T, and T;, but also T,, the so-called
catch-all hypothesis. What is the catch-all hypothesis? Strictly speaking, it
15 not a single hypothesis at all but a lengthy disjunction of ail the possible
alternatives to T, and T,, most of which we have never thought about. As

3 Sal_mon says, trying to guess the ingredients of the catch-all would be like
ying to predict the future of science. Even though some of these ingre-
dient hypotheses entail E, this scarcely helps us to answer the question,

What is P(E/T,), the likelihood of T,? because T, is the disjunction of all

\EZ
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the possible alternatives, including those that do not entail E. And if we
cannot answer this question, then we cannot calculate P(E). Because Sal-
mon regards the problem of calculating the likelihood qf the catch-all as
completely intractable, he proposes a method for choosing between the-
ories that does not require the calculation of P(E).

SALMON’S BAYESIAN ALGORITHM FOR THEORY PREFERENCE

Salmon agrees with Kuhn that theory choice in science is .usuallzfsl com-
parative affair. Typically, the issue is not how well a Darhcula'r piece of
evidence confirms an individual theory, but how well tha , evidence fa-
vors one theory over its rivals. In any given scientiﬁ.c domain only a few
E-E);iés_—usually just two or three—will be competing for acceptance at
any given time. Certainly the catch-all hypothes_is is se]dt.)m a serious op-
tion. Thus, despite the intractability of calculating the ?lkehhoqd of the
catch-all and the expectedness of the evidence, the Bayesml:l approach can
still reflect the realities of scientific practice if it can provide a compara-
tive ranking of those hypotheses that are serious rivals. Salmon’s .Qrogos:;?l
is that,_in choosing between two theories, T, and T, on the basis of evi-

dence E, we should compare the posterior probabilities P(T,/E&B) and

P(T,/E&B). An atiractive feature of this proposal is that, in forming the

ratio of the posterior probabilities, the problematic term P(E) cancels out.

P(T,/E&B) _ P(E/T.&B) x P(T,/B)
P(T,/E&B) P(E/T,&B) x P(T,/B)

Assuming that T, and T are the only candidates for serious consideration,
Salmon’s proposal is that, before the discovery of ev1-d_ence E, scientists
should prefer T, to T, if and only if the prior probability o.f Tl. is greater
than the prior probability of T;. After the discovery of E, scientists should
change their preference from T, to T if and only if the posterior proba-
bility of T; is greater than the posterior probability of T). It fo]lows from
the Bayesian expression for the ratio of the posterior p_robablhtles ’Ehat, after
the discovery of E, scientists should prefer T, to T,, if and only if

PE/T&B)  P(T\/B)
P(E/T\&B) ~ P(T,/B)

or, in other words, if and only if the ratio of the likelihoods is greater tha.n
the reciprocal of the ratios of the prior probabilities. Salmon refers to this
as the Bayesian algorithm for theory preference. ' - ]
Salmon’s algorithm is both ingenious and attractive, but it also has its
limitations and counterintuitive features. First, it should be clear that in
“choosing” T, over T,, we are not deciding to accept T; as true or well-
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confirmed. We are merely saying that, relative to evidence E, T, is better
confirmed than T;. For all we know, T, might be extremely improbable
and unworthy of acceptance. It is important to remember that, in com-
paring the posterior probabilities of T, and T,, we are not calculating—
nor, if Salmon’s pessimism is correct, can we ever calculate—the degree
of confirmation of either hypothesis.’® Thus, the judgment resulting from
Salmon’s algorithm is relatively weak, since it merely asserts that evidence
E supports one theory better than its rival. The degree of that support is
left entirely undetermined.™

Second (as noted by Wade Savage, the editor of the volume in which
Salmon’s article first appeared) Salmon’s algorithm cannot, in its present
form, give us any rational guidance when, as often happens, the body of
evidence for T, 15 diferent from the body of evidence for T,. For, obvi-
ously, P(E) cancels out only when the evidence, E, is the same for both
theories. Similarly, Salmon’s algorithm does not permit us to judge
whether one piece of evidence confirms a theory better than another piece
of evidence,

Third, as Salmon himself notes, when both theories are deterministic
and, in conjunction with B, entai] the evidence E, the ratio of their pos-
terior probabilities given E reduces to the ratio of their prior probabilities.
Thus, according to Salmon’s algorithm, no amount of evidence can
change our initial preference ranking for such theories. For deterministic
theories, the likelthoods become irrelevant and the prior probabilities {in-
fluenced by Kuhn’s criteria for theory choice) dominate completely. Any-
one who is critical of the vagueness of Kuhn's criteria and the diffculty
of weighing and comparing them is unlikely to be impressed by this as a
demonstration of a rational algorithm underlying scientific decisions about
theories.

Salmon’s response to this third point is contained in sections 8 and 9
of his paper. In section 9, “Kuhn’s Criteria,” Salmon distinguishes three
types of theoretical virtue: informational, economic, and confirmational.
Salmon argues that two of Kuhn's criteria—scope and accuracy—fall out
side the confirmationa category and are thus irrelevant to the prior plau-

sibility of theories. This reduces the task of making the basis of plausibili
judgments more precise by Tiario giocus to Kuhn's remaining three
cntena, namely, simplicity, consistency,_and fruitfulness.

In section 8, “Plausible Scenarios,” Salmon explains that, when they
are first formulated, important scientific theories often have great difficulty
in explaining some puzzling phenomenon. He gives as examples the dif-
ficulty the absence of detectable stellar parallax posed for the Copemnican
theory and the problems of giving a coherent account of the optical ether
and the phenomenon of selective absorption faced by the wave theory of
light. Salmon’s point is that the original versions of these theories did not

"logically entail the phenomena they had difficulty explaining, Indeed, the
- probability of E (a puzzling phenomenon) given T (the theory in question)

-



