Topic DPL: Answers

Exercise 1.1a

Explain why the rule &E for MPL is a sound rule.

In MPL, if $(\phi \& \psi)$ is true under some interpretation then ϕ and ψ are true under that interpretation too. Thus, if $(\phi \& \psi)$ is entailed by some formula or formulas, then ϕ and ψ are both entailed by those formulas too. So if in a derivation $(\phi \& \psi)$ is entailed by its dependencies, and you write down ϕ or ψ with those dependencies, then the formula you write down will be entailed by its dependencies. Hence &E for MPL is a sound rule.

Exercise 1.2a

Explain why for any interpretation under which "Sa" is true, "∃xSx" is true too.

Consider all interpretations under which "Sa" is true. For all such interpretations, the predicate S applies to the element a. That means for all such interpretations, there exists some element in the domain to which the predicate S applies. So for all interpretations under which "Sa" is true, "∃xSx" is true too.

Exercise 1.2b

- Show (Fa & Ga) \vdash ($\exists xFx \& Ga$)
- 1 1. (Fa & Ga) A
- 1 2. Fa 1 &E
- 1 3.∃xFx 2∃I
- 1 4. Ga 1 &E
- 1 5. (3xFx & Ga) 3, 4 &I

Exercise 1.2c Explain why "=x(=xSx & Rx)"is not a well-formed formula of MPL.

" $\exists x (\exists x Sx \& Rx)$ " is not a WFF because it cannot be formed by applying the MPL formation rules as stated in [MPL03.1]. Rule 4 there stipulates that only a variable that has not occurred before can be used to generate a quantified WFF. Hence from the expression "($\exists x Sx \& Ra$)", " $\exists y (\exists x Sx \& Ry)$ " can be formed but not " $\exists x (\exists x Sx \& Rx)$ " because "x" already occurs in "($\exists x Sx \& Ra$)".

Exercise 1.2d

State Rule 31 without the shorthand symbolism.

If you have derived φ , and φ contains at least one occurrence of some constant c, then for any variable v which does not occur in φ , you can write down " \exists ", followed by v, followed by an expression formed by replacing one or more occurrences of c within φ by v, depending on everything φ depends on.

Exercise 1.3a Explain why Rule ∀E is a sound rule.

In MPL, if $\forall v \phi$ is true under some interpretation, then $\phi v/c$ is true under that interpretation too. Thus if $\forall v \phi$ is entailed by some formula or formulas, then $\phi v/c$ is entailed by those formulas too. So if, in a derivation, $\forall v \phi$ is entailed by its dependencies, and you write down $\phi v/c$ with those dependencies, then $\phi v/c$ will be entailed by its dependencies. Hence $\forall E$ is a sound rule.

Exercise 2.1b

Explain why "Fa" does not entail "\vert xFx".

Consider an interpretation under which "Fa" is true but "Fb" is false. Under this interpretation, " $\forall xFx$ " is false (because there exists an element in the domain to which the predicate F does not apply). Since there is an interpretation under which "Fa" is true and " $\forall xFx$ " is false, "Fa" does not entail " $\forall xFx$ ".

Exercise 2.1c Explain why line 3 in the last example violates Rule $\forall I$.

Rule \forall I says that for any variable v and constant c, if you have derived $\varphi v/c$, and c does not occur in φ , and c does not occur in anything $\varphi v/c$ depends on, and $\forall v\varphi$ is a well-formed formula of MPL, then you can write down $\forall v\varphi$, depending on everything $\varphi v/c$ depends on. In the example, φ is "(Fa \rightarrow Fx)", v is "x", c is "a", and $\varphi v/c$ is "(Fa \rightarrow Fa)". The formula on line 3 is " $\forall x$ (Fa \rightarrow Fx)" which violates the restriction that c does not occur in φ , because clearly, "a" does occur in "(Fa \rightarrow Fx)".

Exercise 2.1d

Show that it is not the case that $|= \forall x(Fa \rightarrow Fx)$.

If $|= \forall x(Fa \rightarrow Fx)$, then " $\forall x(Fa \rightarrow Fx)$ " is true under all interpretations. Consider an interpretation in which "Fa" is true but "Fb" is false. Under this interpretation, "(Fa \rightarrow Fb)" is false. So " $\forall x(Fa \rightarrow Fx)$ " is false under this interpretation as well. So " $\forall x(Fa \rightarrow Fx)$ " is not true under all interpretations, and hence it is not the case that $|= \forall x(Fa \rightarrow Fx)$.

Exercise 2.2a What restriction of the rule is violated on line 3 of the last example?

The rule says that for any variable v and constant c, if you have derived $\exists v \phi$, assumed $\phi v/c$, and derived ψ , and c does not occur in ψ , ϕ , or anything ψ depends on (except $\phi v/c$), then you can write down ψ a second time,

depending on everything $\exists v \phi$ and the first ψ depend on, except the assumption $\phi v/c$. In this example, ϕ is "Fx", v is "x", c is "a", $\phi v/c$ is "Fa", and ψ is "Fa". Line 3 violates the restriction that c does not occur in ψ - because "a" does occur in "Fa".

Exercise 2.3a

Show that " $\forall x(Fx \rightarrow Fx)$ " is valid in two different ways.

" $\forall x(Fx \rightarrow Fx)$ " is true under every interpretation. So " $\forall x(Fx \rightarrow Fx)$ " is valid.

" $\forall x(Fx \rightarrow Fx)$ " is derivable using MPL natural deduction:

1	1. Fa	А
	2. (Fa→Fa)	1, →I
	3. ∀x(Fx→Fx)	2, ∀I

Since " $\forall x(Fx \rightarrow Fx)$ " is derivable with no dependencies, and the system is sound, " $\forall x(Fx \rightarrow Fx)$ " is valid.

Exercise 2.3b

Suppose you try to find a derivation of a certain MPL formula, but you do not succeed in finding a derivation. Does it follow that that formula is not valid?

No. If there is no derivation, the formula is not valid. But not succeeding in finding a derivation does not mean that there isn't a derivation.

Exercise 2.4a

```
\forall xHx \vdash Ha
       1) ∀xHx A
1
       2) Ha
1
                    1 ∀E
\forall xHx, (Hc \rightarrow \exists xGx) \vdash \exists xGx
1
      1) ∀xHx
                                   Α
2
       2) (Hc \rightarrow \exists x G x)
                                   Α
1
      3) Hc
                                   1 ∀E
1, 2 4) ∃xGx
                                   2, 3 →E
\forall x(Hx \rightarrow Mx), \forall xHx \vdash \forall xMx
1
      1) \forall x(Hx \rightarrow Mx)
                                   Α
2
       2) ∀xHx
                                   А
1
       3) (Ha→Ma)
                                   1 ∀E
2
      4) Ha
                                   2 ∀E
1, 2 5) Ma
                                   3, 4 →E
1, 2 6) ∀xMx
                                   5 ∀I
Ha ⊢ ∃yHy
       1) Ha
1
                            Α
2
       2) ∃yHy
                            1 ∃I
(Ab \rightarrow Dc) \vdash (Ab \rightarrow \exists xDx)
```

1) (Ab→Dc) А 1 2 2) Ab А 1, 2 3) Dc 1, 2 →E 1, 2 4) ∃xDx 3 ∃I 5) (Ab→∃xDx) 2, 4 →I 1 $\exists x(Fx \& Gx) \vdash \exists xFx$ 1 1) ∃x(Fx&Gx) А 2 2) (Fa&Ga) А 2 3) Fa 2 &E 2 4) ∃xFx 3 3I 5)∃xFx 1, 2, 4 ∃E 1 $\forall x(Fx \rightarrow \forall yGy) \vdash \forall x \forall y(Fx \rightarrow Gy)$ 1 1) ∀x(Fx→∀yGy) А 1 2) (Fa→∀yGy) 1 ∀E 3 3) Fa А 1, 3 4) ∀yGy 2, 3 →E 1,3 5)Gb 4 ∀E 6) (Fa→Gb) 3, 5 →1 1 1 7) ∀y(Fa→Gy) 6 ∀I 8) $\forall x \forall y (Fx \rightarrow Gy)$ 1 7 ∀l $\forall x(Px \rightarrow Qx), \forall x(Qx \rightarrow Px) \vdash \forall x(Px \leftrightarrow Qx)$ 1 1) ∀x(Px→Qx) А 2) $\forall x(Qx \rightarrow Px)$ А 2 3) (Pa→Qa) 1 1 ∀E 2 4) (Qa→Pa) 2 ∀E 1, 2 5) (($Pa \rightarrow Qa$)&($Qa \rightarrow Pa$)) 3, 4 &I 5 ↔l 1, 2 6) (Pa↔Qa) 1, 2 7) ∀x(Px↔Qx) 6 ∀I $\exists x \sim Px \vdash \neg \forall x Px$ 1 1) ∃x~Px А 2 2) ∀xPx А 3) ~Pa 3 А 2 ∀E 2 4) Pa 5 5) ~(Qb&~Qb) А 3, 4 &I 2, 3 6) (Pa&~Pa) 2, 3 7) (Qb&~Qb) 5, 6 ~E 1, 2 8) (Qb&~Qb) 1, 3, 7 ∃E 9) ~∀xPx 2, 8 ~I 1 $(\exists x Px \rightarrow \forall x (Qx \rightarrow Rx)), (Pa \& Qa) \vdash Ra$ 1 1) $(\exists x Px \rightarrow \forall x (Qx \rightarrow Rx))$ A 2) (Pa&Qa) 2 А 2 &E 2 3) Pa 4) ∃xPx 2 3 ∃I 1, 2 5) $\forall x(Qx \rightarrow Rx)$ 1, 4 →E 2 6) Qa 2 &E 1, 2 7) (Qa \rightarrow Ra) 5 ∀E 1, 2 8) Ra 6,7 →E $(\forall x(Px \rightarrow Qx) \rightarrow \exists x(Rx\&Sx)), (\forall x(Px \rightarrow Sx)\&\forall x(Sx \rightarrow Qx)) \vdash \exists xSx$ 1 1) $(\forall x(Px \rightarrow Qx) \rightarrow \exists x(Rx\&Sx))$ A 2) $(\forall x(Px \rightarrow Sx) \& \forall x(Sx \rightarrow Qx))$ A 2 2 3) ∀x(Px→Sx) 2 &E 2 4) $\forall x(Sx \rightarrow Qx)$ 2 &E 5 5) Pa А 2 3 ∀E 6) (Pa→Sa) 5,6 →E 2, 5 7) Sa 2 8) (Sa→Qa) 4 ∀E 2, 5 9) Qa 7, 8 →E 5, 9 →I 10) (Pa→Qa) 2 2 11) ∀x(Px→Qx) 10 ∀I 1, 2 12) $\exists x(Rx\&Sx)$ 1, 11 →E

13 13) 13 14) 13 15) 1, 2 16)		A 13 &E 14 ∃I 12, 13, 15 ∃E
1 2 3 4 4 4 2,4 2		KRX) A A A 4 vl 5 ∃l QxvRX)) 2, 6 &l 4, 7 ∼l
3 2, 3 2, 3 1, 2, 3 13	13) Rb	3 ∀E 8, 9 &I 10 ∀I 1, 11 →E A
	14) (QbvRb) 15) ∃x(QxvRx) 16) ∃x(QxvRx) 17) (∃x(QxvRx)&~∃> 18) ~∀xPx	13 vI 14 ∃I 12, 13, 15 ∃E <(QxvRx)) 2, 16 &I 3, 17 ~I
(∃x~Px-	+∀x~Ox) (∃x~Px→∃x(Qx), ∀x(Px→Rx) ⊢ ∀xRx
1	1) $(\exists x \sim Px \rightarrow \forall x \sim Qx)$	
2	2) (∃x~Px→∃xQx)	
3	3) ∀x(Px→Rx)	A
4	4) ~Pa	A
4	5) ∃x~Px	4 ∃
1,4	6) ∀x~Qx	1, 5 →E
2,4	7) ∃xQx	2, 5 →E
8 9	8) Qa 0)(Sh&, Sh)	A A
, 4	9) ~(Sb&~Sb) 10) ~Qa	A 6 ∀E
1.4.8	11) (Qa&~Qa)	8, 10 &
1, 4, 8	12) (Sb&~Sb)	9, 11 ~E
1, 2, 4	13) (Sb&~Sb)	7, 8, 12 ∃E
1,2	14) Pa	4, 13 ~E
3	15) (Pa→Ra)	3 ∀E
1, 2, 3 1, 2, 3	16) Ra 17) ∀xRx	14, 15 →E 16 ∀E
~∃x(Px∨		$xSx \rightarrow \exists xQx) \vdash \neg \exists x(Rx \lor Sx)$
1	1) ~∃x(PxvQx)	Α
2	2) (∃xRx→∃xP	
3	3) (∃xSx→∃xQ	
4	4) ∃x(RxvSx)	A
5	5) Ra	A

5	S) (SNSK SKQK)	
4	4) ∃x(RxvSx)	А
5	5) Ra	Α
5	6) ∃xRx	5 ∃I
2,5	7) ∃xPx	2,6 →E
8	8) Pb	Α
8	9) (PbvQb)	8 vl
8	10) ∃x(PxvQx)	9 ∃I
2,5	11) ∃x(PxvQx)	7,8,10∃E
1, 2, 5	12) (∃x(PxvQx)&~∃x(PxvQ	Qx)) 1, 11 &I
1, 2	13) ~Ra	5, 12 ~I
14	14) Sa	А
14	15) ∃xSx	14 ₃ I
3,14	16) ∃xQx	3, 15 →E
17	17) Qa	А
17	18) (PavQa)	17 vl
17	19) ∃x(PxvQx)	18 ∃I
3,14	20) ∃x(PxvQx)	16, 17, 19 ∃E
1, 3, 14	21) $(\exists x(PxvQx)\& \exists x(PxvQx))$	Qx)) 1, 20 &I

1,3	22) ~Sa	14, 21 ~l
23	23) (RavSa)	Α
24	24) ~(Tb&~Tb)	Α
1, 2, 23	25) Sa	13, 23 vE
1,2,3,23	26) (Sa&~Sa)	22, 25 &I
1, 2, 3, 23	27) (Tb&~Tb)	24, 26 ~E
1, 2, 3, 4	28) (Tb&~Tb)	4, 23, 27 ∃E
1, 2, 3	29) ~∃x(RxvSx)	4, 28 ~I