Topic DPL: Answers

Exercise 1.1a

Explain why the rule \&E for MPL is a sound rule.
In MPL, if $(\varphi \& \psi)$ is true under some interpretation then φ and ψ are true under that interpretation too. Thus, if $(\varphi \& \psi)$ is entailed by some formula or formulas, then φ and ψ are both entailed by those formulas too. So if in a derivation $(\varphi \& \psi)$ is entailed by its dependencies, and you write down φ or ψ with those dependencies, then the formula you write down will be entailed by its dependencies. Hence \&E for MPL is a sound rule.

Exercise 1.2a

Explain why for any interpretation under which "Sa" is true, " $\exists x S x$ " is true too.
Consider all interpretations under which "Sa" is true. For all such interpretations, the predicate S applies to the element a. That means for all such interpretations, there exists some element in the domain to which the predicate S applies. So for all interpretations under which "Sa" is true, " $\exists x S x$ " is true too.

Exercise 1.2b

Show (Fa \& Ga) $\vdash(\exists x F x$ \& Ga)

1. (Fa \& Ga) A
2. Fa $1 \& E$
3. $\exists x F x \quad 2$ 키
4. Ga $\quad 1 \& E$
5. ($\operatorname{mxFx} \& \mathrm{Ga}$) 3, 4 \&

Exercise 1.2c

Explain why " $\exists x(\exists x S x$ \& Rx)"is not a well-formed formula of MPL.
" $\exists x(\exists x S x \& R x)$ "is not a WFF because it cannot be formed by applying the MPL formation rules as stated in [MPL03.1]. Rule 4 there stipulates that only a variable that has not occurred before can be used to generate a quantified WFF. Hence from the expression "($\exists x S x \& R a)$ ", " $\exists y(\exists x S x \& R y)$ " can be formed but not " $\exists x(\exists x S x \& R x)$ "because"x" already occurs in"($\exists x S x \& R a)$ ".

Exercise 1.2d

State Rule \exists l without the shorthand symbolism.
If you have derived φ, and φ contains at least one occurrence of some constant c , then for any variable v which does not occur in φ, you can write down " \exists ", followed by v , followed by an expression formed by replacing one or more occurrences of c within φ by v , depending on everything φ depends on.

Exercise 1.3a

Explain why Rule $\forall \mathrm{E}$ is a sound rule.
In MPL, if $\forall v \varphi$ is true under some interpretation, then $\varphi v / \mathrm{c}$ is true under that interpretation too. Thus if $\forall v \varphi$ is entailed by some formula or formulas, then $\varphi v / \mathrm{c}$ is entailed by those formulas too. So if, in a derivation, $\forall \vee \varphi$ is entailed by its dependencies, and you write down $\varphi \vee / \mathrm{c}$ with those dependencies, then $\varphi \mathrm{v} / \mathrm{c}$ will be entailed by its dependencies. Hence $\forall E$ is a sound rule.

Exercise 2.1b

Explain why "Fa" does not entail " $\forall x F x$ ".
Consider an interpretation under which " Fa " is true but " Fb " is false. Under this interpretation, " $\forall x F x$ " is false (because there exists an element in the domain to which the predicate F does not apply).
Since there is an interpretation under which "Fa" is true and " xFx " is
false, "Fa" does not entail " $\forall x F x$ ".

Exercise 2.1c

Explain why line 3 in the last example violates Rule $\forall I$.
Rule \forall l says that for any variable v and constant c, if you have derived $\varphi v / c$, and c does not occur in φ, and c does not occur in anything $\varphi v / \mathrm{c}$ depends on, and $\forall \mathrm{V} \varphi$ is a well-formed formula of MPL, then you can write down $\forall \mathrm{V} \varphi$, depending on everything $\varphi \mathrm{V} / \mathrm{c}$ depends on. In the example, φ is " $(\mathrm{Fa} \rightarrow \mathrm{Fx})$ ",
v is " x ", c is "a", and $\varphi v / \mathrm{c}$ is " $(\mathrm{Fa} \rightarrow \mathrm{Fa})$ ". The formula on line 3 is " $\forall x(\mathrm{Fa} \rightarrow \mathrm{Fx})$ " which violates the restriction that c does not occur in φ, because clearly, "a" does occur in "(Fa $\rightarrow \mathrm{Fx})$ ".

Exercise 2.1d

Show that it is not the case that $\mathrm{I}=\forall \mathrm{x}(\mathrm{Fa} \rightarrow \mathrm{Fx})$.
If $\mid=\forall x(F a \rightarrow F x)$, then $" \forall x(F a \rightarrow F x)$ " is true under all interpretations.
Consider an interpretation in which "Fa" is true but "Fb" is false.
Under this interpretation, " $(\mathrm{Fa} \rightarrow \mathrm{Fb})$ " is false. So " $\forall x(\mathrm{Fa} \rightarrow \mathrm{Fx})$ " is false under
this interpretation as well. So " $\forall x(\mathrm{Fa} \rightarrow \mathrm{Fx})$ " is not true under all interpretations,
and hence it is not the case that $\mid=\forall x(F a \rightarrow F x)$.

Exercise 2.2a

What restriction of the rule is violated on line 3 of the last example?
The rule says that for any variable v and constant c , if you have derived $\exists v \varphi$, assumed $\varphi v / \mathrm{c}$, and derived ψ, and c does not occur in ψ, φ, or anything ψ depends on (except $\varphi \vee / \mathrm{c}$), then you can write down ψ a second time,
depending on everything $\exists v \varphi$ and the first ψ depend on, except the
assumption $\varphi v / \mathrm{c}$. In this example, φ is " Fx ", v is " x ", c is "a", $\varphi \mathrm{v} / \mathrm{c}$ is " Fa ",
and ψ is "Fa". Line 3 violates the restriction that c does not occur in ψ because "a" does occur in "Fa".

Exercise 2.3a

Show that " $\forall \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Fx})$ " is valid in two different ways.
" $\forall \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Fx})$ " is true under every interpretation. So " $\forall \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Fx})$ " is valid.
" $\forall x(F x \rightarrow F x)$ " is derivable using MPL natural deduction:

1	1. Fa	A
	2. $(\mathrm{Fa} \rightarrow \mathrm{Fa})$	$1, \rightarrow \mathrm{I}$
	3. $\forall \mathrm{F}(\mathrm{Fx} \rightarrow \mathrm{Fx})$	2, $\forall \mathrm{I}$

Since " $\forall x(F x \rightarrow F x)$ " is derivable with no dependencies, and the system is sound, " $\forall x(F x \rightarrow F x)$ " is valid.

Exercise 2.3b

Suppose you try to find a derivation of a certain MPL formula, but you do not succeed in finding a derivation. Does it follow that that formula is not valid?

No. If there is no derivation, the formula is not valid.
But not succeeding in finding a derivation does not mean that there isn't a derivation.

Exercise 2.4a

1	1）（ $\mathrm{Ab} \rightarrow \mathrm{Dc}$ ）	A
2	2）$A b$	A
1， 2	3） Dc	$1,2 \rightarrow \mathrm{E}$
1， 2	4）$\exists x$ Dx	3 ョı
1		$2,4 \rightarrow 1$
$\exists x(F x$ \＆Gx）$\vdash \mathrm{FxFx}$		
1	1）$\exists x$（Fx\＆Gx）	A
2	2）（Fa\＆Ga）	A
2	3） Fa	2 \＆
2	4）$\exists x F x$	3 ョı
1	5）$\exists \mathrm{xFP}$	$1,2,4$ э
$\forall x(F x \rightarrow \forall y G y) \vdash \forall x \forall y(F x \rightarrow G y)$		
1	1）$\forall x(F x \rightarrow \forall y G y)$	A
1	2）（Fa $\rightarrow \forall y G y)$	$1 \forall \mathrm{E}$
3	3） Fa	A
1，3	4） $\mathrm{\forall yGy}$	2， $3 \rightarrow \mathrm{E}$
1，3	5） Gb	$4 \forall \mathrm{E}$
1	6）$(\mathrm{Fa} \rightarrow \mathrm{Gb})$	3， $5 \rightarrow 1$
1	7）$\forall y(\mathrm{Fa} \rightarrow \mathrm{Gy})$	6 VI
1	8）$\forall x \forall y(F x \rightarrow G y)$	$7 \mathrm{\forall l}$
$\forall x(P x \rightarrow Q x), \forall x(Q x \rightarrow P x) \vdash \forall x(P x \leftrightarrow Q x)$		
1	1）$\forall x(P x \rightarrow Q x)$	A
2	2）$\forall x(Q x \rightarrow P x)$	A
1	3）$(\mathrm{Pa} \rightarrow \mathrm{Qa})$	$1 \forall \mathrm{E}$
2	4）$(\mathrm{Qa} \rightarrow \mathrm{Pa})$	$2 \forall E$
1，2	5）$((\mathrm{Pa} \rightarrow \mathrm{Qa}) \&(\mathrm{Qa}$	a）3， 4 \＆
1，2	6）（ $\mathrm{Pa} \leftrightarrow \mathrm{Qa}$ ）	$5 \leftrightarrow 1$
1，2	7）$\forall x(P x \leftrightarrow Q x)$	6 Vl
$\exists \mathrm{x} \sim \mathrm{Px} \vdash \sim \forall \mathrm{PPx}$		
1	1）$\exists \mathrm{x} \sim \mathrm{Px}$	A
2	2）$\forall x P P x$	A
3	3）$\sim \mathrm{Pa}$	A
2	4） Pa	$2 \forall E$
5	5）$\sim(\mathrm{Qb} \mathrm{\&} \sim \mathrm{Qb})$	A
2， 3	6）（Pa\＆Pa）	3， 4 \＆
2， 3	7）（Qb\＆Qb）	5， 6 ～E
1，2	8）（Qb\＆Qb）	1，3， 7 ョE
1	9）$\sim \forall x P x$	2， $8 \sim 1$
$(\exists x P x \rightarrow \forall x(Q x \rightarrow R x)),(P a \& Q a) \vdash \mathrm{Ra}$		
1	1）$(\exists x P x \rightarrow \forall x(Q x$	x））A
2	2）（Pa\＆Qa）	A
2	3） Pa	2 \＆
2	4）$\exists x P x$	3 키
1，2	5）$\forall x(Q x \rightarrow R x)$	1， $4 \rightarrow \mathrm{E}$
2	6）Qa	2 \＆
1，2	7）$(\mathrm{Qa} \rightarrow \mathrm{Ra})$	$5 \forall \mathrm{E}$
1，2 8） Ra		$6,7 \rightarrow E$
$(\forall x(P x \rightarrow Q x) \rightarrow \exists x(R x \& S x)),(\forall x(P x \rightarrow S x) \& \forall x(S x \rightarrow Q x)) \vdash \exists x S x$		
	1）$(\forall x(P x \rightarrow Q x) \rightarrow \exists x(R x \& S x)) \quad A$	
2	2）$(\forall x(P x \rightarrow S x) \& \forall x(S x \rightarrow Q x)) \quad A$	
	3）$\forall x(P x \rightarrow S x)$	2 \＆ E
2	4）$\forall x(S x \rightarrow Q x)$	2 \＆
5	5） Pa	A
2	6）$(\mathrm{Pa} \rightarrow \mathrm{Sa})$	$3 \forall \mathrm{E}$
2， 5	7） Sa	$5,6 \rightarrow \mathrm{E}$
	8）$(\mathrm{Sa} \rightarrow \mathrm{Qa})$	$4 \forall \mathrm{E}$
2， 5	9） Qa	$7,8 \rightarrow \mathrm{E}$
2	10）（Pa $\rightarrow \mathrm{Qa})$	5， $9 \rightarrow 1$
	11）$\forall x(P x \rightarrow Q x)$	10 VI
1， 2	12）$\exists x(R x \& S x)$	$1,11 \rightarrow \mathrm{E}$

13	$13)(R b \& S b)$
13	$14) \mathrm{Sb}$
13	$15) ~$
yxSx	A
1,2	$16) ~ \exists x S x$

1	1）$(\forall x(P x \& \sim Q x) \rightarrow \exists x R x)$	A
2	2）$\sim \exists x(Q x v R x)$	A
3	3）$\forall x P x$	A
4	4） Qa	A
4	5）（QavRa）	4 vl
4	6）$\exists x(Q x v R x)$	5 키
2， 4	7）（ $\exists x(Q x v R x) \& \sim \exists x(Q x v R x)$	x））2， 6 \＆
2	8）$\sim \mathrm{Qa}$	4， 7 ～1
3	9） Pa	$3 \forall \mathrm{E}$
2， 3	10）（Pa\＆～Qa）	8， 9 \＆
2， 3	11）$\forall x(P \times \& \sim Q x)$	10 VI
1，2， 3	12）$\exists x R x$	1， $11 \rightarrow \mathrm{E}$
13	13） Rb	A
13	14）（QbvRb）	13 vl
13	15）$\exists x(Q x v R x)$	14 키
1，2， 3	16）$\exists x(Q \times v R x)$	12，13， 15 ョ玉
1，2， 3	17）（ $\exists x(\mathrm{QxvRx}) \& \sim \exists x(\mathrm{QxvR} \times)$	Rx））2， 16 \＆
1， 2	18）$\sim \forall x P x$	3， 17 ～

$(\exists x \sim P x \rightarrow \forall x \sim Q x),(\exists x \sim P x \rightarrow \exists x Q x), \forall x(P x \rightarrow R x) \vdash \forall x R x$

1	1）（ $\exists x \sim P x \rightarrow \forall x \sim Q x)$	A
2	2）（ $\exists x \sim P x \rightarrow \exists x Q x)$	A
3	3）$\forall x(P x \rightarrow R x)$	A
4	4）$\sim \mathrm{Pa}$	A
4	5）$\exists x \sim P x$	4 키
1， 4	6）$\forall x \sim Q x$	$1,5 \rightarrow \mathrm{E}$
2， 4	7）$\exists x Q x$	$2,5 \rightarrow \mathrm{E}$
8	8） Qa	A
9	9）$\sim(S b \& \sim S b)$	A
1， 4	10）～Qa	$6 \forall \mathrm{E}$
1，4， 8	11）（Qa\＆Qa）	8， 10 \＆
1，4， 8	12）（Sb\＆Sb）	9， $11 \sim \mathrm{E}$
1，2， 4	13）（Sb\＆Sb）	7，8， 12 эЕ
1， 2	14） Pa	4， $13 \sim \mathrm{E}$
3	15）（ $\mathrm{Pa} \rightarrow \mathrm{Ra}$ ）	$3 \forall \mathrm{E}$
1，2， 3	16） Ra	$14,15 \rightarrow E$
1，2， 3	17）$\forall x R$	$16 \forall \mathrm{E}$

1	1）$\sim \exists x(P x v Q x)$	A
2	2）（ $\exists x R x \rightarrow \exists x P x$ ）	A
3		A
4	4）$\exists x(\mathrm{RxvS} x)$	A
5	5） Ra	A
5	6）$\exists x R x$	5 키
2， 5	7）$\exists x P \mathrm{P}$	$2,6 \rightarrow \mathrm{E}$
8	8） Pb	A
8	9）（PbvQb）	8 vl
8	10）$\exists x(P x \vee Q x)$	9 키
2， 5	11）$\exists x(P x \vee Q x)$	7，8，10ョE
1，2， 5	12）（ $\exists x(\mathrm{PxvQx}) \&$	Qx））1， 11 \＆
1， 2	13）$\sim \mathrm{Ra}$	5， $12 \sim 1$
14	14） Sa	A
14	15）$\exists x$ Sx	14 ョا
3， 14	16）$\exists x Q x$	3， $15 \rightarrow \mathrm{E}$
17	17）Qa	A
17	18）（PavQa）	17 vl
17	19）$\exists x(P x \vee Q x)$	18 ョコ
3， 14	20）$\exists x(P \mathrm{PvQQx})$	16，17， 19 ョ
1，3， 14	21）（ $\exists x(\mathrm{PxvQx}) \&$	Qx））1， 20 \＆

1, 3	22) $\sim \mathrm{Sa}$	14, 21 ~
23	23) (RavSa)	A
24	24) $\sim(T b \& \sim T b)$	A
1, 2, 23	25) Sa	13, 23 vE
1 ,2, 3, 23	26) (Sa\&~Sa)	
1, 2, 3, 23	27) (Tb\& Tb)	24, 26 ~ E
1, 2, 3, 4	28) (Tb\& Tb)	4, 23, 27 ョ ${ }^{\text {E }}$
1, 2, 3	29) $\sim \exists x(R x v S x)$	4, 28 ~

