Lecture #2 of Ramachandran's 2003 Reith lecture.

The message from the eyeball on the retina goes though the optic nerve and goes to two major visual centers in the brain. One of these I'll call it the old system, the old visual centre, it's the evolutionary ancient centre, the old pathway that's in the brain stem and it's called the superior colliculus. The second pathway goes to the cortex, the visual cortex in the back of the brain and it's called the new pathway. The new pathway in the cortex is doing most of what we usually think of as vision, like recognizing objects, consciously. The old pathway, on the other hand, is involved in locating objects in the visual field, so that you can orient to it, swivel your eyeballs towards it, rotate your head towards it. Thereby directing your high acuity central foveal region of the retina towards the object so then you can deploy the new visual pathway and then proceed to identify what the object is and then generate the appropriate behaviour for that object.

Let me now tell you now about an extraordinary neurological syndrome called Blindsight discovered by Larry Weiscrantz and Alan Cowey at Oxford. It's been known for more than a century that if the visual cortex which is part of the new visual pathway, if that's damaged you become blind. For example if the right visual cortex is damaged you're completely blind on the left side if you look straight everything to the left side of your nose, you're completely blind to.

When examining a patient named GY who had this type of visual deficit, one half of the visual field completely missing, where he was blind, Weizcrantz noticed something really strange. He showed the patient a little spot of light in the Blind region. Weiscrantz asked him "what do you see"? The patient said "nothing" and that's what you would expect given that he was blind but now he told the patient "I know you can't see it but please reach out and touch it" The patient said well that's very strange - he must have thought this is a very eccentric request. I mean, point to this thing which he can't see.

So the patient said, you know I can't, I can't see it how can I point to it? Weiscrantz said well just try anyway, take a guess. The patient then reaches out to touch the object and imagine the researcher's surprise when the patient reaches out and points to it accurately, points to the dot that he cannot consciously perceive. After hundreds of trials it became obvious that he could point accurately on 99% of trials even though he claimed on each trial that he was just guessing. He said he didn't know if he was getting it right or not. From his point of view it might as well have been an experiment on ESP. The staggering implication of this is that the patient was accurately able to point to an object that he denied being able to see. How is this possible? How do you explain his ability to infer the location of an invisible object and point to it accurately?

The answer is obvious. As I said GY has damage to his visual cortex - the new pathway - which is why he is blind. But remember he still has the other old pathway, the other pathway going through his brain stem and superior colliculus as a back-up. So even though the message from the eyes and optic nerves doesn't reach the visual cortex, given that the visual cortex is damaged, they take the parallel route to the superior colliculus which allows him to locate the object in space and the message then gets relayed to higher brain centres in the parietal lobes that guide the hand movement accurately to point to the invisible object! It's as if even though GY the person, the human being is oblivious to what's going on, there's another unconscious zombie trapped in him who can guide the hand movement with uncanny accuracy.

This explanation suggests that only the new pathway is conscious - events in the old pathway, going though the colliculus and guiding the hand movement can occur without you the person being conscious of it! Why? Why should one pathway alone or its computational style perhaps lead to conscious awareness, whereas neurons in a parallel part of the brain, the old pathway can carry out even complex computations without being conscious.