Module: Sentential logic
Quote of the page
I don’t know what I may seem to the world, but as to myself, I seem only to have been like a boy playing on the sea-shore and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.
- Isaac Newton
Popular pages
Consider this argument :
All hackers are nerds.
Mitch is a hacker.
So Mitch is a nerd.
This argument is obviously valid, but its validity cannot be demonstrated in SL. This is because the best we can do in SL is to translate the premises and the conclusion using distinct sentence letters, as in :
P, Q ⊧ R.
Such a sequent is of course not valid in SL. To demonstrate the validity of the first argument, we need to analyse the internal structure of the premises and the conclusion in more details. A more powerful formal system, predicate logic, allows us to do that. Like SL, PL is also a formal system of logic. It is at least as powerful as SL in that PL includes all the WFFs of SL, and any logical truth of SL can also be proved in PL. But in addition, PL can be used to express certain logical connections between statements that SL cannot, and carry out more complicated proofs.
Determine whether these valid arguments can be shown to be valid in SL.